翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hotelling's T-square : ウィキペディア英語版
Hotelling's T-squared distribution

In statistics Hotelling's ''T''-squared distribution is a univariate distribution proportional to the F-distribution and arises importantly as the distribution of a set of statistics which are natural generalizations of the statistics underlying Student's ''t''-distribution. In particular, the distribution arises in multivariate statistics in undertaking tests of the differences between the (multivariate) means of different populations, where tests for univariate problems would make use of a ''t''-test.
The distribution is named for Harold Hotelling, who developed it as a generalization of Student's ''t''-distribution.
==The distribution==
If the vector ''p''d''1'' is Gaussian multivariate-distributed with zero mean and unit covariance matrix N(''p''0''1'',''p''I''p'') and ''m''M''p'' is a ''p x p'' matrix with a Wishart distribution with unit scale matrix and ''m'' degrees of freedom W(''p''I''p'',''m'') then ''m''(''1''d' ''p''M−1''p''d''1'') has a Hotelling ''T2'' distribution with dimensionality parameter ''p'' and ''m'' degrees of freedom.〔Eric W. Weisstein, ''(CRC Concise Encyclopedia of Mathematics, Second Edition )'', Chapman & Hall/CRC, 2003, p. 1408〕
If the notation T^2_ is used to denote a random variable having Hotelling's ''T''-squared distribution with parameters ''p'' and ''m'' then, if a random variable ''X'' has Hotelling's ''T''-squared distribution,
:
X \sim T^2_

then〔
:
\frac X\sim F_

where F_ is the ''F''-distribution with parameters ''p'' and ''m−p+1''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hotelling's T-squared distribution」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.